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TECHNIQUES:  High performance and in-situ X-ray absorption spectroscopy and spatially-resolved XAS of 
structured materials;  optimized for the “tender” energy range 
from 1.2 up to 8 keV.   

APPLICATIONS: Focus on Energy, Climate, Soil and Earth Sciences 

•  Will enable spatially-resolved and in-situ studies of speciation and 
local structure by XAS, X-ray fluorescence (XRF) and spectroscopic 
imaging, in a non-vacuum environment.  

•  Chemical sensitivity to key lighter elements Mg through Ti, and 
advantageous heavier-element L and M edges such as Cd, Pd, U.  

•  Optimized for the NSLS-II dipole bend source: high brightness over a 
tunable spatial resolution and energy scanning across 1.2-8 keV.  

CAPABILITIES: 
Source:  dipole bend magnet, Ec 2.39 keV.  Two optimized endstations.     
Energy Range:  1.2 to 8 keV (optimized for 1.2-5 keV). 
Spatial Resolution:  1x1 mm to <1x1 µm;  Flux:  up to 3x1012 ph/sec. 
Detection:  high- and low-countrate XRF from 0.9 to 8.3 keV. 
Speed:  on-the-fly scanning for ~1 minute EXAFS and/or rapid imaging. 

Sulfur-doped silicon:   
Enhanced efficiency 

photovoltaics.   
Surface structure (SEM) image of 
micro-textured and hyper-doped Si.  
Surface texture increases intrinsic 
absorption of the Si at the usual 
wavelengths; hyper-doping 
dramatically increases absorption at 
higher wavelengths. 
B. Newman, T. Buonassisi, P.Northrup, in prep    

DEVELOPMENT STRATEGY:    
•   Our goal is high productivity at the earliest possible date.     
•   Strategy combines in-house and external aspects to create 

world-class capabilities and develop cutting-edge research 
programs -- and be ready to go on Day One.    

•   Utilize upgraded facilities at NSLS X19A Facility Beamline 
and X15B User Consortium-operated beamline.  

•   Design, commission TES microprobe endstation at X15B. 
•   Synchrotron Catalysis Consortium and BNL Chemistry: 

ongoing development of in-situ programs at X19A.  
•   Pre-test and commission optical components at NSLS.    
•   Collaborate closely with ISS (NEXT beamline for high-flux 

hard X-ray spectroscopies), XFM (hard X-ray micro-
spectroscopy beamline), and SRX (Project Beamline: 
submicron hard X-ray probe) development teams.   

SCIENTIFIC IMPACT:    
•  Energy Materials:  Photovoltaic, fuel-cell, battery and 

superconducting (nano)materials.  
•  Catalysis/Chemistry:  Materials (zeolites, thin films, 

nanomaterials), reaction mechanisms and intermediate 
species, poisoning of catalysts.  

•  Environmental/Earth Science:  Biogeochemical and 
redox processes, contaminant behavior and 
remediation; Ca-Mg-Si high-pressure phases.  

•  Climate:  Terrestrial/marine C cycling, carbonate (bio)
mineralization, geologic record of climate change, 
ocean chemistry, CO2 sequestration.     

•  Sustainability:  Nutrient cycling, transport and 
bioavailability, biofuel/biomass productivity, especially 
in poor and leached tropical soils.   

Phosphorus distribution and 
speciation:  Key nutrient cycling 

and bioavailability influence 
global photosynthesis and 

biofuel/agricultural productivity.    
Spatial and species heterogeneity of phosphorus 
in a natural sediment.  Colors represent P (green), 
Si (blue) and Na (red).  Point spectra indicate a 
variety of species.   
Ingall, Brandes, Diaz, deJonge, Paterson, McNulty, Elliott, Northrup, 
“Phosphorus K-edge XANES spectroscopy of mineral standards," J. 
Synch. Rad., 18 (2011).  
JDiaz, Ingall, Benitez-Nelson, Paterson, de Jonge, McNulty, Brandes, 
“Marine Polyphosphate: A Key Player in Geologic Phosphorus 
Sequestration” Science, 320, (2008). 

Sulfur poisoning of Fuel-Cell 
catalysts:  in-situ XAS    

•  Novel Spectroelectrochemical cell design for in-
situ measurements of fuel-cell catalyst at controlled 
electrochemical potential and under gas flow, all 
compatible with low-energy fluorescence-mode XAS 
measurements.  
•  Real fuel-cell materials and geometry.     
•  Sample spectra under varying potentials, indicating 
changes in S speciation and oxidation state.  

O. Baturina, B. Gould, Y. Garsany, R. 
Stroman and P. Northrup, “Identification of 
adsorbed SO2 species on fuel cell 
electrocatalysts by sulfur K-edge XANES 
combined with electrochemistry” in review.   

Investigation of site disorder in 
high-pressure silicate phases: Si 

K-edge EXAFS.   
EXAFS data (k2-weighted) suitable for 
determination of site disorder in microgram-size 
sample from high-pressure synthesis run.   
P.Northrup,  
L. Li,  
D. Weidner, 
in prep    

Nutrient sorption processes in 
poor and highly-leached soils: P, 

S, Ca, Mg, and K EXAFS.   
S K-edge EXAFS 
(Fourier transform, 
real) data and fit for 
sulfate adsorbed to 
gibbsite mineral 
surface. Fit includes 
S-O, multiple 
scattering, and 
distances to two Al 
and one O in the 
substrate.       
P. Northrup, M. Alves (USP, Brazil), D. Sparks, in prep. 


